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INTRODUCTION TO THE T AND CHI-SQUARE DISTRIBUTION

FOR A MORE ACCURATE EVALUATION

OF THE MEASURE OF THE WORD ERROR RATE IN ANALOG-

TO-DIGITAL CONVERTERS

The word error rate (WER) in an Analog to Digital Converter (ADC) is the probability of

receiving an erroneous code for an input, after correction is made for gain, offset, and nonlinearity

errors, and a specified allowance is made for noise. Typical causes of word errors are metastability

and timing jitter of comparators within the ADC [1].

New statistical techniques which can better integrate what is sustained in the IEEE standard and

in [2] have been proposed. In particular, Student and chi-square distributions have been introduced

for a more accurate measurement of the word error rate in the case of n successive observations.

1. RECALL OF THEORETICAL BASIS [3], [4]

It is well known that a generic normally distributed measure M = N(m, u) with

expected value m and standard uncertainty u, can be expressed in a reduced form using

the
M − m

u
= N (0, 1) normally distributed, with expected value zero and unitary stan-

dard uncertainty. It is also known that in the presence of a number ν of normal random

variables given in the reduced form N1 (0, 1) , · · · , Nν (0, 1), mutually independent and

independent from M , the sum of squares of such variables, that is χ2
ν =

n
∑

i=1

N2
i (0, 1) is

distributed like a chi-square distribution with ν degrees of freedom. The ratio between

the original measure expressed in the reduced form
M − m

u
= N (0, 1) and the positive

square root of χ2
ν divided by degrees of freedom ν, can be expressed by the following

variable:

1 Received: November 3, 2008. Revised: November 21, 2008.
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Tν =
N (0, 1)

√

ν
∑

i=1

N2
i

(0, 1)
/

ν

,with E
{

Ni (0, 1) ,N j (0, 1)
}

= 0

i , j = 1, · · · , ν(condition of independence).

(1)

Tν follows a Student distribution (or t distribution) with ν degrees of freedom. Its

probability density function can be expressed by

fν (t) =
1
√
πν

Γ [(ν + 1)/2]

Γ [ν/2]

1
(

1 + t2
/

ν
)(ν+1)/2

−∞ < t < +∞; ν = 1, 2, ..., (2)

where Γ (α) =

+∞
∫

0

e−x xα−1 dx represents the generic gamma function.

In the case of ν = 1, Eq. (1) becomes the probability density function of the

so-called Cauchy distribution for which neither the expected value nor the variance are

defined.

It can be also demonstrated that:

lim
ν→∞

fν (t) =
1
√

2π
e−t2/2; lim

ν→∞
Var {Tν} = lim

ν→∞

ν

ν − 2
= 1 , (3)

that is, when the number of degrees of freedom tends to infinity, the Student variable

tends to the normal reduced variable. The confidence level p and the corresponding

uncertainty interval [−tp,+tp], centred around zero for the Student variable with ν

degrees of freedom, is determined as follows:

p = P
{

−tp ≤ Tν ≤ tp

}

=

tp
∫

−tp

f ν (t) dt. (4)

The Student table of quantiles (see for instance GUM [5] – Table 2.2 p.66) offers

different values of tp for successive numbers of degrees of freedom corresponding to

the various confidence levels p.

2. ESTIMATION OF THE WORD ERROR RATE FOR N SUCCESSIVE

OBSERVATIONS

We can consider n independent successive observations (o1, · · · , on) of the same

measurand (trial samples), obtained by the same measurement process implemented

in identical conditions of repeatability. As known we are, in this situation, in the
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presence of intrinsic random effects on the measurement process (inherent variability

of the measurement process). If we hypothesize that each observation of the word error

is a normally random variable with expected value mo and standard uncertainty uo,

then Oi = N (mo, uo) ∀i = 1, ..., n .

The arithmetic mean O =

n
∑

i=1

oi

n
≈ N













mo,
u2

0

n













is an estimator, that is a random

variable with the same expected value mo and variance reduced by a factor (1/n).

We now introduce the normal arithmetic mean expressed in its reduced form,

that is:
O − mo

uo√
n

= N (0, 1) . An estimator S
(

O
)

of
uo√

n
exists, and it is given by

the so-called experimental standard deviation of the mean, according to the following

formula:

S
(

O
)

=

√

√

√

√

n
∑

i=1

(

oi − O
)2

[n (n − 1)]
=

uo√
n

√

χ2
n−1

n − 1
, (5)

being:

χ2
n−1 =

n
∑

i=1

(

oi − O
)2

u2
o

=

n
∑

i=1

N2
i (0, 1). (6)

Eq. (6) denotes the well known chi-square with (n − 1) degrees of freedom, with

the Ni(0, 1) mutually independent and independent from O and therefore from No(0, 1).

Consequently, it can be verified that:

Tn−1 =
O − mo

S
(

O
) =

No (0, 1)
√

χ2
n−1

/

(n − 1)

, (7)

is a Student variable with (n − 1) degrees of freedom.

If now we consider the uncertainty interval introduced in (3), assuming ν = n-1

and adopting (7), we can write:

p = P
{

−tp ≤ Tn−1 ≤ tp

}

= P
{

mo − tpS
(

O
)

≤ O ≤ mo + tpS
(

O
)}

, (8)

which represents an estimation of the confidence level shown in Eq. (4).

The arithmetic mean O can be interpreted as a final measure but in Eq. (8) any

useful information about the uncertainty interval are not deduced being mo generally

unknown and the estimator S
(

O
)

of Eq. (5) a random variable.

An approximate solution can be obtained by introducing (see GUM [5] G.3.1) the

Student variable:
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Tn−1 =
M − o

so

where the observed word errors [o1, · · · , on] are introduced. In this case o represents

the estimate of mo while so =

√

√

n
∑

i=1

(oi − o)2
/

[n (n − 1)] is the estimate of
u0√

n
, a

value of the estimator So obtained in the a particular moment of measurement.

The uncertainty interval of the final measure m of the word error, although ap-

proximated because of the adopted estimate procedures, becomes:

p = P
{

o − tpso ≤ M ≤ o + tpso

}

, (9)

where tp is still given by the above recalled Student table.

3. ESTIMATION OF THE WORD ERROR RATE FOR THE SUM OF N

SUCCESSIVE OBSERVATION

In this case, the adopted measurement model is that of a final measure M obtained

as a result of the sum of r arithmetic means of observations (o1, o2 · · · , or) where the

generic Oi is the mean of ni observations leading back to random effects (GUM [5]

type A) and s random variables M1, · · · ,M j affected by systematic effects (GUM [5]

type B):

M =

r
∑

i=1

Oi +

s
∑

j=1

M j, (10)

all the variables belonging to the second part of Eq. (10) are hypothesized as indepen-

dent. A number of degrees of freedom equal to νi = ni − 1, is given to each Oi.

Interesting statistical parameters are:































E
{

Oi

}

= moi,

√

Var
{

Oi

}

= uoi

/√
ni ∀ i = 1, ..., r

E
{

M j

}

= m j,

√

Var
{

M j

}

= u j ∀ j = 1, ..., s

consequently we have:











































E {M} =
r
∑

i=1

moi +

s
∑

j=1

m j

√

Var {M} = uM =

















r
∑

i=1

u2
oi

ni

+

s
∑

j=1

u2
j

















1/2

,

(11)
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In this case, the disposal data are:

the observed values in the estimation of (mo1,mo2..., mor)

the computed values (so1
, so2
, · · · , sor), being soi

=

√

√

√

√

√

ni
∑

k=1

(oik − oi)
2

ni (ni − 1)
the generic esti-

mation of
uoi√

ni

.

the parameters m j and u j deduced by a previous type B estimation.

For example, if M j is included in the [a, b] interval, we can hypothesize an uniform

distribution with m j =
a + b

2
and u j =

b − a

2
√

3
. If this data is available, Eq. (11) can be

approximated as follows:











































Ẽ {M} =
r
∑

i=1

oi +

s
∑

j=1

m j

ũM =

















r
∑

i=1

s2
oi
+

s
∑

j=1

u2
j

















1/2

.

(12)

Going back to Eq. (9), if we admit that it is possible to declare, even recalling the

central limit theorem, that M follows a normal distribution, we obtain:

M = N
(

Ẽ {M} , ũ {M}
)

. (13)

We accept, in this case, that the variable Tνe f f
=

M − Ẽ {M}
ũ {M}

follows a Student

distribution with the number of degrees of freedom to be determined.

To this end an interesting formula can be taken into account (Welch-Satterthwaite)

[5], [6] and [7]

νe f f =

[

r
∑

i=1

s2
oi
+

s
∑

j=1

u2
j

]2

[

r
∑

i=1

s4
oi

ni−1
+

s
∑

j=1

u4
j

ν j

] , (14)

where ν jis the number of degrees of freedom which can be attributed to u2
j .

The contributions of the u4
j to the denominator of Eq. (14) is sometimes negligible

when its number of degrees of freedom tends to infinite.

The final level of uncertainty with a confidence level p is obtained in this case

from the following equation

P
{

Ẽ {M} − tp ũM ≤ M ≤ Ẽ {M} + tp ũM

}

= p, (15)
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where for a stated confidence level, the corresponding value tp is determined from the

Student table corresponding to the number of degrees of freedom, νe f f , obtained from

Eq. (14).

If νe f f is not integer, as is usually the case, then it is necessary to round it off to

nearest lower integer.

4. CONCLUSIONS

The aim of this paper is to introduce a new detailed method as a contribution for

defining the Word Error Rate measurement. This is made according with GUM [5]

and its supplements carried out by BIPM. It has been quantified the uncertainty level

with relative confidence level in the two cases of n successive observation and of the

sum of n successive observation using Student and Chi-square distributions.
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